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Elastic image registration in presence of polyconvex constraints

Marcus Wagner

1. Introduction.

The present paper is concerned with the problem of image registration: 01) A given pair of greyscale images,
which will be described through functions I0(s), I1(s) : Ω → [ 0 , 1 ] on a rectangular domain Ω ⊂ R2, 02)

should be brought in correspondence in a best possible way by means of a vector field x(s) : Ω → R2

satisfying the condition I1(s − x(s)) ≈ I0(s). The information captured in x will be used, for instance, in
order to understand whether certain objects pictured in I0 and I1 are identical or if they have been subjected
to intermittent alterations.
Depending on the a priori available information about the shape of the pictured objects and their motion
behaviour, very different approaches for the determination of the transformation x have been proposed in
the literature. For example, assuming that only pixels with the same intensity should be mapped one to
another, x has been determined as optical displacement or optical flow. 03) Other approaches comprise the
determination of x as a flow governed by a Navier-Stokes equation, 04) as a solution of a Monge-Kantorovič
transportation problem, 05) as a rigid transformation in a higher-dimensional space 06) or by application
of level-set methods. 07) For several reasons, the registration by means of an elastic deformation became
particularly popular. 08) Firstly, in many situations one may assume that the changes in I1 with respect
to the reference image I0 can be attributed to an elastic deformation of the pictured objects. 09) Secondly,
this approach fits the problem into the multidimensional Calculus of Variations, where the solution can be
obtained by well-established numerical methods. Consequently, a large part of the literature is concerned
with variational methods where x is sought as a linear-elastic 10) or hyperelastic deformation. 11) In these
problems, the objective consists of a fidelity term

(
I1(s − x(s)) − I0(s)

)2 reflecting the minimization of
the grey value difference and a regularization term, 12) which will be chosen in such a way that the Euler-

01) For a detailed introduction, cf. [ Modersitzki 04 ] and [ Hintermüller/ Keeling 09 ] .
02) In the present investigation, we restrict ourselves to the two-dimensional case. Note that the registration problem

has been considered for image data on higher-dimensional domains as well, see e. g. [ Barbieri/Welk/Weickert

09 ] and [ Pöschl/Modersitzki/Scherzer 10 ] .
03) See [ Alvarez/Weickert/Sánchez 00 ] , [ Keeling/Ring 05 ] , and the detailed introduction in [ Aubert/Korn-

probst 06 ] , pp. 250 ff. Cf. also [ Haussecker/Fleet/Jähne/Garbe/Scharr/Spies 09 ] and [ Ruhnau/Schnörr

07 ] for a combination of the optical flow framework with different dynamical models.
04) [ Christensen/Rabbitt/Miller 96 ] and [ Ruhnau/Schnörr 07 ] .
05) [ Haker/Zhu/Tannenbaum/Angenent 04 ] and [ Museyko/Stiglmayr/Klamroth/Leugering 09 ] .
06) [ Breitenreicher/Schnörr 09 ] .
07) [ Vemuri/Ye/Chen/Leonard 00 ] .
08) Starting with [ Broit 81 ] .
09) This is particularly the case in medical imaging since the behaviour of human tissue is governed by hyperelastic

material laws, see e. g. [ Ogden 03 ] .
10) [ Fischer/Modersitzki 03 ] , [ Haber/Modersitzki 04 ] , [ Henn/Witsch 00 ] , [ Henn/Witsch 01 ] , [ Moder-

sitzki 04 ] , pp. 77 ff.
11) [ Droske/Rumpf 04 ] , [ Droske/Rumpf 07 ] , [ Le Guyader/Vese 09 ] .
12) See [ Scherzer/Grasmair/Grossauer/Haltmeier/Lenzen 09 ] , particularly pp. 53 ff., Sect. 3 and 4, for regu-

larization methods in image processing.
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Lagrange equations of the problem describe a linear-elastic or hyperelastic deformation, respectively. For
the numerical solution of the problems, most authors use indirect methods. 13)

Following [ Wagner 08 ] , pp. 26 ff., and [ Wagner 10 ] , we study the elastic image registration problem
together with state constraints as well as with restrictions for the partial derivatives of x. Thus the given
variational problems will be transformed into state-constrained multidimensional control problems of the
so-called Dieudonné-Rashevsky type. 14) The numerical solution of the resulting optimal control problems
will be obtained by an efficient direct method. 15) In contrast to the indirect methods from the Calculus
of Variations, the incorporation of additional state and control constraints produces no further difficulties
within this direct approach. Let us note that, in the present investigation, we will always assume that there
is an overall correlation between the greyscale intensity distributions as well as the geometrical properties of
the template and reference image, thus confining ourselves to unimodal registration. 16)

In the present paper, we focus on two situations requiring the incorporation of polyconvex gradient con-
straints. First, we will combine a uniform bound for the shear stress generated by x, i. e., a convex gradient
constraint, with a restriction guaranteeing the bijectivity of the deformation on a given subregion Θ ⊆ Ω.
Obviously, this can be achieved by imposing inequality constraints of the type 0 < ε1 6 Det

(
E2−Jx(s)

)
6

ε2 6 (+∞) (∀) s ∈ Θ, i. e., by addition of a polyconvex gradient constraint. In comparison with the related
papers [ Haber/Modersitzki 04 ] and [ Haber/Modersitzki 07 ] , we agree with the ”first-discretize-
then-optimize”-strategy but fix the lower bound ε1 > 0 in order to get a constant polyconvex body as the
control set. 17) An upper bound for Det

(
E2 − Jx(s) is already implied by the convex gradient constraint.

Consequently, in the corresponding experiments with Θ = Ω, grid tangling has been completely avoided.
Compared with [ Wagner 10 ] , this could be achieved by a very acceptable price: the loss of reconstruction
quality amounts to maximal 3%.
Our second goal is to embed a rigidity restriction for the deformation of a subregion Θ into the elastic
registration of the whole image. As we will see in Subsect. 2.c) below, this demand results in the introduction
of a polyconvex gradient constraint as well.
The structure of the paper is as follows: In Section 2 , we establish the variational as well as the optimal
control formulation of the elastic image registration problem, relying on generic models of linear elastic-
ity/hyperelasticity. Further, the additionally introduced constraints will be discussed in detail. Section 3
is devoted to the strategy for the numerical solution of the problems. In order to justify the application of
direct methods, we start with the proof of existence theorems. Then we describe the discretization of the
problems, the algorithm used for the solution, as well as the visualization and evaluation of the numerical
results. Section 4 starts with the documentation of the image data used in our experiments. Then we
present selected results of our numerical experiments with volumetric constraints and with the rigid motion
of a subregion. Finally, in Section 5 , we provide a discussion of the results and a conclusion.

13) Summarized in [ Modersitzki 04 ] , pp. 101 ff. On the contrary, [ Modersitzki 09 ] is concerned with direct solution

methods.
14) Different problems of mathematical image processing may be reformulated in this way. See [ Brune/Maurer/Wag-

ner 09 ] (optical flow with simultaneous edge detection), [ Franek/Franek/Maurer/Wagner 10 ] (image denoi-

sing with simultaneous edge detection), [ Wagner 09 ] , pp. 564 ff., Sect. 5 (shape from shading), and the upcoming

diploma thesis of Angelov (multimodal image matching).
15) Cf. again [ Brune/Maurer/Wagner 09 ] and [ Franek/Franek/Maurer/Wagner 10 ] .
16) If one cannot expect a correspondence between the greyscale intensities of I0 and I1 from the outset, one arrives at

the problem of multimodal registration, which must exclusively be based on the geometrical information contained

in the images. Cf. [ Modersitzki 09 ] , pp. 97 ff.
17) In the algorithm [ Haber/Modersitzki 07 ] , p. 367 f., ε1 has been treated as a barrier parameter with iteratively

decreasing values.
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Notations.

Let Ω ⊂ Rm be the closure of a bounded Lipschitz domain (in strong sense). Then C
k(Ω,Rr) denotes

the space of r-dimensional vector functions f : Ω → Rr, whose components are continuous (k = 0) or k-
times continuously differentiable (k = 1, ... , ∞), respectively; Lp(Ω,Rr) denotes the space of r-dimensional
vector functions f : Ω → Rr, whose components are integrable in the pth power ( 1 6 p < ∞) or are
measurable and esentially bounded (p =∞). W 1,p

0 (Ω,Rr) denotes the Sobolev space of r-dimensional vector
functions f : Ω→ Rr with compactly supported components, possessing first-order weak partial derivatives
and belonging together with them to the space Lp(Ω,R) ( 1 6 p < ∞). W 1,∞

0 (Ω,Rr) is understood as the
Sobolev space of all r-vector functions f : Ω → Rr with Lipschitz continuous components and boundary
values zero. 18) Jx denotes the Jacobi matrix of the vector function x ∈ W

1,p
0 (Ω,Rr). The abbreviation

“(∀) s ∈ A” has to be read as “for almost all s ∈ A” or “for all s ∈ A except a Lebesgue null set”, and the
symbol o denotes, depending on the context, the zero element or the zero function of the underlying space.
For the sake of completeness, we quote the definitions of polyconvexity for functions and sets:

Definition 1.1. 1) (Polyconvex functions) 19) We consider the elements v ∈ Rnm as (n,m)-matrices
and collect all subdeterminants of v within a vector T (v) with dimension τ(n,m). A function r : Rnm →
R ∪{ (+∞} is said to be polyconvex if there exists a convex function h : Rτ(n,m) → R ∪{ (+∞}, which
allows the following representation of the function r as a composition:

r(v) = h(T (v)) ∀ v ∈ Rnm . (1.1)

2) (Polyconvex sets) 20) Analogously, a set P ⊆ Rnm is called polyconvex if there exists a convex set
H ⊆ Rτ(n,m), which allows to represent the set P in the following way:

P = { v ∈ Rnm
∣∣ T (v) ∈ H } . (1.2)

Note that every convex set is polyconvex as well. Famous examples of polyconvex sets are the groups
GL+(n) = { v ∈ Rn×n

∣∣ Det (v) > 0 } and SO(n) = { v ∈ Rn×n
∣∣ Det (v) = 1 }.

2. An optimal control approach to the image registration problem.

a) Variational problems corresponding with generic elasticity models.

Starting with the variational formulation of the elastic/hyperelastic image registration problem, let us con-
sider the following variational problems within Sobolev spaces, both based on generic elasticity models. If
the regularization term corresponds with a linear-elastic model, the problem reads as 21)

(V)lin : F (x) =
∫

Ω

(
I1( s− x(s) )− I0(s)

)2

ds + µ ·
∫

Ω

2∑
i,j=1

( ∂xi(s)
∂sj

+
∂xj(s)
∂si

)2

ds −→ inf ! ; (2.1)

x ∈W 1,p
0 (Ω,R2) (2.2)

18) Cf. [ Evans/Gariepy 92 ] , p. 131, Theorem 5.

19) [ Dacorogna 08 ] , p. 157, Definition 5.1., (iii). See also [ Ball 77 ] .

20) See [ Dacorogna 08 ] , pp. 315 ff., and [ Dacorogna/Ribeiro 06 ] .

21) Cf. [ Henn/Witsch 01 ], p. 1079 f.
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while a generic hyperelastic model leads to the problem 22)

(V)hyp : F (x) =
∫

Ω

(
I1( s− x(s) )− I0(s)

)2

ds + µ ·
∫

Ω

(
c1
∥∥E2 − Jx(s)

∥∥ p
+ c2

(
Det (E2 − Jx(s) )

)2 )
ds −→ inf ! ; (2.3)

x ∈W 1,p
0 (Ω,R2) . (2.4)

The image data I0(s), I1(s) : Ω → [ 0 , 1 ] are measurable and bounded; we assume further 2 6 p < ∞,
µ > 0 and c1, c2 > 0. E2 denotes the (2, 2)-unit matrix. As matrix norm, we use ‖M ‖ = trace (MTM ).
Following [ Wagner 10 ] , we replace in both problems the integrand within the fidelity term by(
I1( s−x(s) )− I0(s)

)2

≈
(
I1(s) − DI1(s)T x(s) + 1

2 x(s)TD2I1(s)x(s) + 1
6 y(s) · ‖x(s) ‖3 − I0(s)

)2

(2.5)

where DI1 ∈ L∞(Ω,R2) and D2I1 ∈ L∞(Ω,R2×2) are suitable approximations for the derivatives ∇I1 and
∇2I1 within a second-order Taylor expansion of I1( s−x(s) ). The third-order remainder term 1

6 y(s)·‖x(s) ‖3

contains an additional, state-constrained variable y ∈ L∞(Ω,R), | y(s) | 6 ηmax. 23) Note that the integrand
within (2.4) is a polyconvex function 24) with respect to the derivatives of x. Below, we will further deviate
from convexity of the problem by introducing polyconvex constraints as well.

b) Optimal control reformulation by incorporation of a convex gradient constraint.

From the viewpoint of elasticity, the variational models are incomplete since they contain no bound for the
resulting shear stress, which is proportional to the modulus of Jx. 25) On the other hand, the introduction
of an additional control restriction leads to a further regularization of the problems, which is particularly
desirable for the treatment of polyconvex constraints. Consequently, to both variational problems (V)lin and
(V)hyp, the convex gradient constraint

Jx(s) ∈ K ⊂ R2×2 (∀) s ∈ Ω (2.6)

where K ⊂ R2×2 is a convex norm body with o ∈ int (K), will be added. In the numerical experiments below,
we will specify K as the four-dimensional cube K = [−R , R ]4 with R > 0.

c) Incorporation of polyconvex gradient constraints.

We are now in position to describe two situations, which lead to the introduction of polyconvex gradient
constraints:

1) Bijective deformation of a subregion. The bijectivity of the variable transformation s̃ = s − x(s) on the
subregion Θ ⊆ Ω is ensured while there are no changes of the sign of its Jacobian on Θ. This situation will
be described by the polyconvex gradient constraint Det

(
E2 − Jx(s)

)
> 0 or

Det
(
E2 − Jx(s)

)
− ε1 > 0 (∀) s ∈ Θ (2.7)

22) [ Droske/Rumpf 04 ] , p. 673 f.
23) [ Wagner 10 ] , p. 4.
24) See Definition 1.1. above.
25) We emphasize that the validity of the underlying elasticity models is bound by restrictions for the maximal shear

stress generated by the deformation x. See, e. g. [ Chmelka/Melan 76 ] , pp. 38 – 45 (linear-elastic model, material

sciences) and [ Gasser/Holzapfel 02 ] , p. 340 f., and the literature cited there (different hyperelastic models,

human tissue).
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with sufficiently small ε1 > 0. More generally, the allowed change of a volume element may be bounded by
the two-sided constraint 26)

0 < ε1 6 Det
(
E2 − Jx(s)

)
6 ε2 < ∞ (∀) s ∈ Θ ⇐⇒

Det
(
E2 − Jx(s)

)
− ε1 > 0 , Det

(
E2 − Jx(s)

)
− ε2 6 0 (∀) s ∈ Θ . (2.8)

Note that already the convex constraint (2.6) implies an upper bound for Det
(
E2 − Jx(s)

)
.

2) Subregions subjected to a rigid deformation. In this case, on the subregion Θ ⊆ Ω it holds that s − x(s)
= Rs− s0 with R =

(
cosα −sinα
sinα cosα

)
. This implies Det (R) = Det

(
E2− Jx(s)

)
= 1 as well as Jx(s) = E2−R

= const. ⇐⇒ ∇2x1(s) = o, ∇2x2(s) = o. Consequently, we obtain a polyconvex gradient constraint

1− ε 6 Det (E2 − Jx(s) ) 6 1 + ε (∀) s ∈ Θ ⇐⇒ (2.9)

− ε 6 Det
(
Jx(s)

)
− ∂

∂s1
x1(s)− ∂

∂s2
x2(s) 6 ε (∀) s ∈ Θ (2.10)

together with the following convex constraints for the second partial derivatives of x:

∂2

∂s2
1

xi(s) ,
∂2

∂s1 ∂s2
xi(s) ,

∂2

∂s2
2

xi(s) ∈ [−ε , ε ] (∀) s ∈ Θ , i = 1, 2 (2.11)

where ε > 0 is sufficiently small.

d) The resulting control problems.

To (V)lin and (V)hyp, we add the convex gradient restriction (2.6), thus converting both problems into
multidimensional control problems of Dieudonné-Rashevsky type. Further, the integrand within the fidelity
term will be replaced by its approximation (2.5) where y will be specified as a measurable function, which is
uniformly bounded by ηmax. As a result, we obtain the following state-constrained optimal control problems:

(P)lin : F (x, y) =
∫

Ω

(
I1(s) − DI1(s)T x(s) + 1

2 x(s)TD2I1(s)x(s) + 1
6 y(s) ‖x(s) ‖3 − I0(s)

)2

ds

+ µ ·
∫

Ω

2∑
i,j=1

( ∂xi(s)
∂sj

+
∂xj(s)
∂si

)2

ds −→ inf ! ; (2.12)

(x, y) ∈W 1,p
0 (Ω,R2) × L

∞(Ω,R) ; (2.13)

| y(s) | 6 ηmax (∀) s ∈ Ω ; (2.14)

Jx(s) ∈ K (∀) s ∈ Ω (2.15)

(linear-elastic image registration) and

(P)hyp : F (x, y) =
∫

Ω

(
I1(s) − DI1(s)T x(s) + 1

2 x(s)TD2I1(s)x(s) + 1
6 y(s) ‖x(s) ‖3 − I0(s)

)2

ds

+ µ ·
∫

Ω

(
c1
∥∥E2 − Jx(s)

∥∥ p + c2
(

Det (E2 − Jx(s) )
)2 )

ds −→ inf ! ; (2.16)

(x, y) ∈W 1,p
0 (Ω,R2) × L

∞(Ω,R) ; (2.17)

| y(s) | 6 ηmax (∀) s ∈ Ω ; (2.18)

Jx(s) ∈ K (∀) s ∈ Ω (2.19)

26) Cf. [ Haber/Modersitzki 07 ] , p. 363, (6b).
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(hyperelastic image registration) with measurable, bounded data I0, I1 ∈ L∞(Ω,R), DI1 ∈ L∞(Ω,R2) and
D2I1 ∈ L∞(Ω,R2×2), 1 6 p < ∞, an uniform bound ηmax > 0 for the fitting variable y in the remainder
in the Taylor expansion, a regularization parameter µ > 0 and positive weights c1, c2 > 0. K ⊂ R2×2 is a
convex body with o ∈ int (K).
The incorporation of the polyconvex constraints (2.7) or (2.8) into (P)lin and (P)hyp leads to the problems
(P)lin

(1) and (P)hyp
(1), which are identical with the former but the control restriction

Jx(s) ∈ K ∩ P (∀) s ∈ Θ (2.20)

with

P =
{
v ∈ R2×2

∣∣ Det (E2 − v)− ε1 > 0
}

or (2.21)

P =
{
v ∈ R2×2

∣∣ Det (E2 − v)− ε1 > 0 , Det (E2 − v)− ε2 6 0
}
, (2.22)

respectively, has been added. Note that K ∩ P ⊂ R2×2 is a polyconvex, compact, arcwise connected set 27)

with nonempty interior.
For the consideration of the constraints (2.9) and (2.11), the following reformulation of (P)lin must be done:

(P)lin
(2) : F (w, x1, x2, y) =

∫
Ω

(
I1(s) − DI1(s)T w(s) + 1

2 w(s)TD2I1(s)w(s) + 1
6 y(s) ‖w(s) ‖3

− I0(s)
)2

ds + 2µ ·
∫

Ω

(
2x11(s)2 +

(
x12(s) + x21(s)

)2 + 2x22(s)2
)
ds −→ inf ! ; (2.23)

(w, x1, x2, y) ∈W 1,p
0 (Ω,R2) × L

p(Ω,R2) × L
p(Ω,R2) × L

∞(Ω,R) ; x1

∣∣Θ , x2

∣∣Θ ∈W 1,p(Θ,R2) ; (2.24)

∇w1(s) = x1(s) , ∇w2(s) = x2(s) (∀) s ∈ Ω ; (2.25)

| y(s) | 6 ηmax (∀) s ∈ Ω ; (2.26)( x11(s) x12(s)
x21(s) x22(s)

)
∈ K (∀) s ∈ Ω ; (2.27)( x11(s) x12(s)

x21(s) x22(s)

)
∈ K ∩ P = K ∩

{
v ∈ R2×2

∣∣ |Det (v)− v11 − v22 | 6 ε
}

(∀) s ∈ Θ ; (2.28)

Jx1(s) , Jx2(s) ∈ K̃ =
{
v ∈ R2×2

∣∣ Max i,j | vij | 6 ε
}

(∀) s ∈ Θ (2.29)

where ε > 0. In (P)lin
(2), the restriction Jw ∈ K ∩ P forms a polyconvex state constraint on Θ. As remarked

in [ Wagner 10 ] , p. 5 f., Remark 1, because of o ∈ int (K), the problem (P)lin
(2) admits certain feasible

rigid motions. Accordingly, a problem (P)hyp
(2) will be obtained as a reformulation of (P)hyp.

3. Numerical solution by direct methods.

a) Existence theorems.

In order to justify the application of direct methods to the solution of the multidimensional control problems
from Subsection 2.d), the existence of global minimizers must be first ensured. Concerning (P)lin and (P)hyp,
we may refer to the existence theorems from [ Wagner 10 ] , which will be summarized in the following

Theorem 3.1. 28) Consider the problems (P)lin and (P)hyp with the assumptions about the data mentioned
above.

27) The last assertion follows from [ Berger 04 ] , p. 165, Corollary 8.4.3.
28) [ Wagner 10 ] , p. 6, Theorem 2.1., and p. 7 f., Theorem 2.2.
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1) Assume that a sequence { (xN , yN ) } of feasible processes of (P)lin obeys the convergence relations

xN →C0(Ω,R2) x , JxN
∗−⇀ L∞(Ω,R4)Jx and yN

∗−⇀ L∞(Ω,R)y . (3.1)

Then (x, y) is feasible as well. Furthermore, the objective (2.12) is bounded from below and lower semicontin-
uous with respect to the convergence from (3.1), and (P)lin admits a global minimizer (x̂, ŷ) ∈W 1,∞

0 (Ω,R2) ×
L
∞(Ω,R).

2) For (P)hyp, the same assertions are true.

We may now state our first existence theorem:

Theorem 3.2. (Existence of global minimizers for problems with volumetric constraints) Con-
sider the problems (P)lin

(1) and (P)hyp
(1) with the assumptions about the data mentioned above. Assume

further that Θ ⊆ Ω is a compact subset with nonempty interior.

1) Whether the polyconvex set in (2.20) is described by (2.21) or (2.22), (P)lin
(1) admits a global minimizer

(x̂, ŷ) ∈W 1,∞
0 (Ω,R2) × L

∞(Ω,R).

2) Assertion 1) remains true for (P)hyp
(1) as well.

Proof. 1) Due to the facts that the zero solution remains feasible after adding the restriction (2.20)
to (P)lin and F (x, y) > 0, the new problem (P)lin

(1) admits a minimizing sequence { (xN , yN ) } as well.
Since (2.14) and (2.15), the norms ‖xN ‖W 1,∞

0 (Ω,R2) as well as ‖ yN ‖L∞(Ω,R) remain bounded, and after a
passage to appropriate subsequences, we may assume that the minimizing sequence possesses a limit element
(x̂, ŷ) ∈W 1,∞

0 (Ω,R2)×L∞(Ω,R), which is, by Theorem 3.1., feasible in (P)lin. Consequently, it only remains
to check whether x̂ satisfies the constraint (2.20). From [ Dacorogna 08 ] , p. 395, Theorem 8.20. 1), and
p. 396, Remark 8.21., (v), the following implications may be derived:

xN
∗−⇀ W 1,∞(Ω,R2)x̂ =⇒ (xN

∣∣Θ) ∗−⇀ W 1,∞(Θ,R2)(x̂
∣∣Θ) =⇒ (3.2)(

(E2 − JxN )
∣∣Θ ) ∗−⇀ L∞(Θ,R4)

(
(E2 − Jx̂)

∣∣Θ ) =⇒ (3.3)(
Det

(
E2 − JxN

) ∣∣Θ ) ∗−⇀ L∞(Θ,R)
(

Det
(
E2 − Jx̂

) ∣∣Θ ) , (3.4)

and we arrive at

lim
N→∞

〈Det
(
E2 − JxN

)
− ε1 , ϕ 〉 = 〈Det

(
E2 − Jx̂

)
− ε1 , ϕ 〉 (3.5)

for all test functions ϕ ∈ L1(Θ,R) with ϕ(s) > 0 (∀) s ∈ Θ. Consequently, the inequality Det
(
E2−Jx̂(s)

)
−

ε1 > 0 holds almost everywhere on Θ. For the second inequality in (2.8), we reason in a completely analogous
way. Now, we invoke Theorem 3.1. again in order to confirm the lower semicontinuity of the objective, and
the proof is complete.

2) This assertion may be proven in complete analogy to Part 1).

In a similar way, we obtain an existence theorem for the problems (P)lin
(2) and (P)hyp

(2):

Theorem 3.3. (Existence of global minimizers for problems with constraints describing a rigid
motion) Consider the problems (P)lin

(2) and (P)hyp
(2) with the assumptions about the data mentioned

above, and assume further that Θ ⊆ Ω is a compact set with nonempty interior.

1) Then the problem (P)lin
(2) admits a global minimizer (ŵ, x̂, ŷ) ∈W 1,∞

0 (Ω,R2) × L
∞(Ω,R4) × L

∞(Ω,R)
with (x̂

∣∣Θ) ∈W 1,∞(Θ,R4).
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2) The problem (P)hyp
(2) admits a global minimizer (ŵ, x̂, ŷ) ∈W 1,∞

0 (Ω,R2) × L
∞(Ω,R4) × L

∞(Ω,R) with
(x̂
∣∣Θ) ∈W 1,∞(Θ,R4) as well.

Proof. 1) Since F (w, x1, x2, y) > 0 and the zero solution is feasible, (P)lin
(2) admits a minimizing se-

quence { (wN , xN1 , x
N
2 , y

N ) } wherein, by (2.26) and (2.27), ‖wN ‖W 1,∞
0 (Ω,R2) as well as ‖ yN ‖L∞(Ω,R) re-

main bounded. (2.29) implies the boundedness of ‖ (xN1
∣∣Θ) ‖

W 1,∞
0 (Θ,R4)

and ‖ (xN2
∣∣Θ) ‖

W 1,∞
0 (Θ,R4)

. After
a passage to suitable subsequences, we may assume that the minimizing sequence possesses a limit element
(ŵ, x̂1, x̂2, ŷ) ∈W 1,∞

0 (Ω,R2) × L
∞(Ω,R2) × L

∞(Ω,R2) × L
∞(Ω,R) with (x̂1

∣∣Θ), (x̂2

∣∣Θ) ∈W 1,∞(Ω,R2)
and

wN →C0(Ω,R2) ŵ , xN1
∗−⇀ L∞(Ω,R2)x̂1 , x

N
2
∗−⇀ L∞(Ω,R2)x̂2 , y

N ∗−⇀ L∞(Ω,R)ŷ , (3.6)

(xN1
∣∣Θ)→C0(Θ,R2) (x̂1

∣∣Θ) , (xN2
∣∣Θ)→C0(Θ,R2) (x̂2

∣∣Θ) , (3.7)

(JxN1
∣∣Θ) ∗−⇀ L∞(Θ,R4)(Jx̂1

∣∣Θ) , (JxN2
∣∣Θ) ∗−⇀ L∞(Ω,R4)(Jx̂2

∣∣Θ) . (3.8)

Under the weak∗-convergence of { yN } and { JwN } = { (xN1 , x
N
2 ) } , the convex restrictions (2.26) and

(2.27) will be conserved; due to the uniform convergence of {xN1 } and {xN2 } on Θ, the limit element obeys
the state constraint (2.28), and under the weak∗-convergence of { JxN1 } and { JxN2 } within L

∞(Θ,R4),
the gradient restrictions (2.29) will be carried over to the limit element. As a consequence, (ŵ, x̂1, x̂2, ŷ) is
feasible in (P)lin

(2), and in complete analogy to Theorem 3.2., 1), we see that the limit element is a global
minimizer.

2) Part 2) will be proven analogously to Part 1).

b) Discretization and solution strategy.

Our strategy for the numerical solution of the optimal control problems (P)lin
(k) and (P)hyp

(k) is based on
the principle “first discretize, then optimize”. For the discretization of the problems, which is adapted on
a regular triangulation of the rectangular domain Ω, 29) we refer to [ Wagner 10 ] , p. 8 f. Let us describe,
however, the discretization of the control restrictions with K = [−R , R ] , K̃ = [−ε , ε ] and P according
to (2.21) and (2.28) in more detail. Assuming that the square Qk,l with edge length 1 is divided into the
adjacent triangles ∆′k,l = ∆(sk−1,l−1, sk,l−1, sk,l ) and ∆′′k,l = ∆(sk−1,l−1, sk,l , sk−1,l), and that ξ(i)

k,l = xi(sk,l),
i = 1, 2, in the grid points sk,l, we obtain as the discretization of (2.15) and (2.19):

−R 6 ξ
(i)
k,l−1 − ξ

(i)
k−1,l−1 6 R , −R 6 ξ

(i)
k,l − ξ

(i)
k,l−1 6 R on ∆′k,l ; (3.9)

−R 6 ξ
(i)
k,l − ξ

(i)
k−1,l 6 R , −R 6 ξ

(i)
k−1,l − ξ

(i)
k−1,l−1 6 R on ∆′′k,l (3.10)

for all Qk,l ⊂ Ω and i = 1, 2. To discretize (2.20) means then to add the restrictions

ε1 6
(

1− ( ξ(1)
k,l−1 − ξ

(1)
k−1,l−1 )

) (
1− ( ξ(2)

k,l − ξ
(2)
k,l−1 )

)
−
(
ξ

(1)
k,l − ξ

(1)
k,l−1

) (
ξ

(2)
k,l−1 − ξ

(2)
k−1,l−1

)
6 ε2 on ∆′k,l ;

(3.11)

ε1 6
(

1− ( ξ(1)
k,l − ξ

(1)
k−1,l )

) (
1− ( ξ(2)

k−1,l − ξ
(2)
k−1,l−1 )

)
−
(
ξ

(1)
k−1,l − ξ

(1)
k−1,l−1

) (
ξ

(2)
k,l − ξ

(2)
k−1,l

)
6 ε2 on ∆′′k,l

(3.12)

for all Qk,l ⊂ Θ. Accordingly, with ω
(i)
k,l = w(sk,l) in the grid points sk,l, we discretize (2.27) by

−R 6 ω
(i)
k,l−1 − ω

(i)
k−1,l−1 6 R , −R 6 ω

(i)
k,l − ω

(i)
k,l−1 6 R on ∆′k,l ; (3.13)

−R 6 ω
(i)
k,l − ω

(i)
k−1,l 6 R , −R 6 ω

(i)
k−1,l − ω

(i)
k−1,l−1 6 R on ∆′′k,l (3.14)

29) Note that the necessity to use triangular elements for the discretization of problems involving conditions (2.7) or

(2.8) has been pointed out in [ Haber/Modersitzki 07 ] , p. 364 f., as well.
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for all Qk,l ⊂ Ω, i = 1, 2, and (2.28) by

− ε 6
(
ω

(1)
k,l−1 − ω

(1)
k−1,l−1

) (
ω

(2)
k,l − ω

(2)
k,l−1

)
−
(
ω

(1)
k,l − ω

(1)
k,l−1

) (
ω

(2)
k,l−1 − ω

(2)
k−1,l−1

)
− (ω(1)

k,l−1 − ω
(1)
k−1,l−1 )− (ω(2)

k,l − ω
(2)
k,l−1 ) 6 ε on ∆′k,l ; (3.15)

− ε 6
(
ω

(1)
k,l − ω

(1)
k−1,l

) (
ω

(2)
k−1,l − ω

(2)
k−1,l−1

)
−
(
ω

(1)
k−1,l − ω

(1)
k−1,l−1

) (
ω

(2)
k,l − ω

(2)
k−1,l

)
− (ω(1)

k,l − ω
(1)
k−1,l )− (ω(2)

k−1,l − ω
(2)
k−1,l−1 ) 6 ε on ∆′′k,l (3.16)

for all Qk,l ⊂ Θ. Finally, (2.25) and (2.29) will be discretized by

ξ
(i,1)
k−1,l−1 = ω

(i)
k,l−1 − ω

(i)
k−1,l−1 , ξ

(i,2)
k−1,l−1 = ω

(i)
k,l − ω

(i)
k,l−1 on ∆′k,l ; (3.17)

ξ
(i,1)
k−1,l−1 = ω

(i)
k,l − ω

(i)
k−1,l , ξ

(i,2)
k−1,l−1 = ω

(i)
k−1,l − ω

(i)
k−1,l−1 on ∆′′k,l (3.18)

for all Qk,l ∩ Θ 6= Ø, i = 1, 2, and

− ε 6 ξ
(i,j)
k,l−1 − ξ

(i,j)
k−1,l−1 6 ε , −ε 6 ξ

(i,j)
k,l − ξ

(i,j)
k,l−1 6 ε on ∆′k,l ; (3.19)

− ε 6 ξ
(i,j)
k,l − ξ

(i,j)
k−1,l 6 ε , −ε 6 ξ

(i,j)
k−1,l − ξ

(i,j)
k−1,l−1 6 ε on ∆′′k,l (3.20)

for all Qk,l ⊂ Θ, 1 6 i, j 6 2. The evaluation of the necessary optimality conditions (Karush-Kuhn-Tucker
conditions) for the resulting large-scale nonlinear optimization problems will be effected by interior-point
methods. 30) Our input/output platform for the image data was MATLAB; the discretized problem has been
formulated within modelling language AMPL 31) and subsequently transferred to the interior-point solver
IPOPT. 32) The results have been represented and evaluated with MATLAB again. In order to ensure the
convergence of the discretization method with respect to the x-component of the solutions, one has to proceed
in analogy to [ Franek/Franek/Maurer/Wagner 10 ] , p. 10, Corollary 2.7., assuming that the image
data I1 are sufficiently smooth.

c) Evaluation and visualization of numerical results.

For (P)lin
(1) and (P)hyp

(1), our main indicator for the quantitative evaluation of the results is the relative
reconstruction error

Q(x̂, ŷ) =


∫

Ω \ΩR

(
Irek(s)− I0(s)

)2

ds∫
Ω \ΩR

(
I1(s) − I0(s)

)2

ds


1/2

(3.21)

where the entering reconstruction Irek(s) of I0 has been calculated as

Irek(s) = I1(s) − DI1(s)T x̂(s) + 1
2 x̂(s)TD2I1(s) x̂(s) + 1

6 ŷ(s) · ‖ x̂(s) ‖3 (3.22)

with the help of the obtained minimizing solution (x̂, ŷ) of (P)lin
(k) or (P)hyp

(k). As pointed out in [ Wagner

10 ] , the influence of the member 1
6 ŷ(s) ·‖ x̂(s) ‖3, which can be interpreted as a grey value correction, should

be controlled by means of the indicator

G(x̂, ŷ) = Max
s∈Ω \ΩR

∣∣ 1
6 ŷ(s) · ‖ x̂(s) ‖3

∣∣ . (3.23)

30) See, for example, [ Jansen 97 ] .
31) [ Fourer/Gay/Kernighan 03 ] .
32) [ Laird/Wächter 09 ] , [ Wächter/Biegler 06 ] . The experiments have been performed with version 3.6.1.,

compiled with the MA27 routine.
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We consider a result as practically acceptable as long as G remains below the maximal grey value difference
of the original images. For the calculation of Q and G, a frame ΩR dyed in black of 4 pixels width will
be excluded. Finally, the grid deformation will be measured by the following indicator T , which is directly
related to the particular discretization:

T (x̂) = Max
(k,l) : Qk,l⊂Θ

( 1
2
·Det

(
1− x̂1(sk,l−1) + x̂1(sk−1,l−1) 1− x̂1(sk,l) + x̂1(sk−1,l−1)
− x̂2(sk,l−1) + x̂2(sk−1,l−1) 1− x̂2(sk,l) + x̂2(sk−1,l−1)

)
,

1
2
·Det

(
1− x̂1(sk,l) + x̂1(sk−1,l−1) − x̂1(sk−1,l) + x̂1(sk−1,l−1)
1− x̂2(sk,l) + x̂2(sk−1,l−1) 1− x̂2(sk−1,l) + x̂2(sk−1,l−1)

))
. (3.24)

For (P)lin
(2) and (P)hyp

(2), we introduce the indicators Q(ŵ, ŷ) and G(ŵ, ŷ) accordingly.
The results of an elastic image registration will be visualized by a deformed grid showing the effect of the
solution x̂ when applied to a reference grid (see e. g. Fig. 14) as well as by a colorful orientation plot (see
e. g. Fig. 10). 33) Here the color of a pixel encodes the direction of the deformation vector while its intensity
increases with the magnitude of the vector. The correspondence between orientation and color can be read
from the colored border as a legend. This visualization has been realized with a HSI color model 34) where
every color is represented by the three coordinates hue, saturation and intensity. Since we need only two
coordinates for the visualization of the deformation field x̂, the saturation has been left constant.
Besides x̂, we picture the grey value correction

∣∣ 1
6 ŷ(s) · ‖ x̂(s) ‖3

∣∣, where the correspondence of the greyscale
values has been inverted (white corresponds to zero) and magnified by the factor 3 (see e. g. Fig. 11). In
these figures, a frame of 4 pixels width has been dyed in grey.

4. Numerical experiments.

a) Description of the image data.

For our numerical experiments, three pairs of test images have been chosen. The first pair (Figs. 1 and 3)
originates from medical imaging and shows a coronal section through the left kidney; moreover, in the left
half of the images, a part of the spine is visible. 35) The images have been consecutively generated via MR
tomography with an interval of 2.4 seconds. The original data have been presmoothed by (3× 3)-averaging.
In the second pair (Figs. 4 and 6), adjacent sections through the heart region are shown; the images have
been obtained via PE tomography. 36) Before processing, the original data have been calibrated with respect
to intensity and contrast and smoothed by (3 × 3)-averaging. Within the third pair (Figs. 7 and 9), which
will be used for the experiments with the rigid motion of a subregion, the first image has been artificially
generated by selecting a square cutout in the center of Fig. 3, rotating it by an angle of 5 degree and copying
it into Fig. 1. The second image is identical with Fig. 3. 37) All images have the size of 128×128 pixels with
a frame of 4 pixels width dyed in black.

33) Cf. [ Brune/Maurer/Wagner 09 ] , p. 1197 f.
34) [ Plataniotis/Venetsanopoulos 00 ] , pp. 25 ff.
35) Images courtesy of Prof. R. Stollberger (TU Graz, Institute of Medical Engineering) and Dr. M. Aschauer

(Medical University of Graz, Division of Vascular and Interventional Radiology). From a contrast-modulated sequence

comprising 150 frames in total, the frames #50 and #51 (with nearly identical modality) have been selected. The

data have been used in [ Wagner 10 ] as well.
36) Images courtesy of Dr. M. Dawood (University of Münster, European Institute of Molecular Imaging), cf. [ Dawood/

Büther/Lang/Schober/Schäfers 07 ] . From an unimodal sequence with mutually coinciding image planes, the

frames #29 and #30 have been selected. The data have been used in [ Wagner 10 ] as well.
37) Thus the underlying deformation contains a subregion subjected to a pure rigid motion.
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Image pair 1: MR tomography of the kidney region.

Fig. 1: Template I1 Fig. 2: Grey value difference | I1 − I0 | Fig. 3: Reference image I0

Maximal grey value difference: Max s∈Ω | I1(s)− I0(s) | = 0.1529

Image pair 2: PE tomography of the heart region.

Fig. 4: Template I1 Fig. 5: Grey value difference | I1 − I0 | Fig. 6: Reference image I0

Maximal grey value difference: Max s∈Ω | I1(s)− I0(s) | = 0.3019

Image pair 3: Rotated cutout.

Fig. 7: Template I1 Fig. 8: Grey value difference | I1 − I0 | Fig. 9: Reference image I0

Maximal grey value difference: Max s∈Ω | I1(s)− I0(s) | = 0.2196
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b) Experiments with volumetric constraints.

Image pair 1

R (P)lin (P)lin
(1) (P)lin

(1) (P)hyp (P)hyp
(1) (P)hyp

(1)

ε1 = 10−4 ε1 = 10−2 ε1 = 10−4 ε1 = 10−2

0.5 Q = 37.8548 Q = 37.8529 Q = 37.8552 Q = 37.4770 Q = 37.4771 Q = 37.4796
G = 0.0329 G = 0.0328 G = 0.0328 G = 0.0353 G = 0.0353 G = 0.0353

T = 0.000012 T = 0.000051 T = 0.005001 T = 0.000010 T = 0.00051 T = 0.005001

2.0 Q = 23.9247 Q = 25.0865 Q = 25.1961 Q = 20.1457 Q = 22.1639 Q = 22.2543
G = 0.0863 G = 0.0715 G = 0.0714 G = 0.1028 G = 0.0884 G = 0.0883

T = −2.1739 T = 0.00005 T = 0.005 T = −3.4737 T = 0.00005 T = 0.005

4.0 Q = 21.8547 Q = 22.8772 Q = 22.9347 Q = 15.6321 Q = 18.4053 Q = 18.4753
G = 0.0914 G = 0.0711 G = 0.0710 G = 0.1340 G = 0.0981 G = 0.0979

T = −7.8168 T = 0.00005 T = 0.005 T = −6.7668 T = 0.00005 T = 0.005

8.0 Q = 20.9248 Q = 22.0272 Q = 22.0941 Q = 13.0362 a) Q = 16.1065 Q = 16.2547
G = 0.0914 G = 0.0711 G = 0.0710 G = 0.1878 G = 0.0988 G = 0.0984

T = −7.6112 T = 0.00005 T = 0.005 T = −8.8311 T = 0.00005 T = 0.005

12.0 Q = 21.0102 Q = 22.0396 Q = 22.1089 Q = 12.9879 a) Q = 16.1856 Q = 16.2519
G = 0.0916 G = 0.0709 G = 0.0710 G = 0.1954 G = 0.0988 G = 0.0984

T = −7.7539 T = 0.00005 T = 0.005 T = −8.1379 T = 0.00005 T = 0.005

Table 4.1. Variation in R for µ = 10−5, ηmax = 0.001. In (P)hyp and (P)hyp
(1), p = 2, c1 = 0.05, c2 = 0.25 have been

chosen.

Image pair 2

R (P)lin (P)lin
(1) (P)lin

(1) (P)hyp (P)hyp
(1) (P)hyp

(1)

ε1 = 10−4 ε1 = 10−2 ε1 = 10−4 ε1 = 10−2

0.5 Q = 34.50838 Q = 34.5038 Q = 34.5044 Q = 34.1488 Q = 34.1490 Q = 34.1500
G = 0.0230 G = 0.0230 G = 0.0230 G = 0.0211 G = 0.0211 G = 0.0211

T = 0.000043 T = 0.000061 T = 0.005003 T = 0.000036 T = 0.000058 T = 0.005003

2.0 Q = 21.9221 Q = 22.4079 Q = 22.4269 Q = 18.6264 Q = 19.7118 Q = 19.7637
G = 0.0755 G = 0.0468 G = 0.0466 G = 0.0772 G = 0.0576 G = 0.0572

T = −2.6858 T = 0.00005 T = 0.005001 T = −3.4417 T = 0.00005 T = 0.005001

4.0 Q = 18.5002 Q = 19.1647 Q = 19.1864 Q = 12.7733 Q = 14.7114 Q = 14.7809
G = 0.0798 G = 0.0422 G = 0.0418 G = 0.0756 G = 0.0444 G = 0.0435

T = −4.0353 T = 0.00005 T = 0.005001 T = −4.0734 T = 0.00005 T = 0.005001

8.0 Q = 18.1730 b) Q = 18.8974 c) Q = 18.8928 Q = 11.4767 d) Q = 13.7393 e) Q = 13.7776
G = 0.0797 G = 0.0396 G = 0.0422 G = 0.0852 G = 0.0485 G = 0.0479

T = −4.2868 T = 0.00005 T = 0.005001 T = −5.2111 T = 0.00005 T = 0.005

12.0 Q = 18.1807 Q = 18.8908 Q = 18.9233 Q = 11.3974 Q = 13.6216 a) Q = 13.7730
G = 0.0797 G = 0.0424 G = 0.0396 G = 0.0852 G = 0.0468 G = 0.0501

T = −4.2868 T = 0.00005 T = 0.005 T = −5.5780 T = 0.00005 T = 0.005

Table 4.2. Variation in R for µ = 10−5, ηmax = 0.001. In (P)hyp and (P)hyp
(1), p = 2, c1 = 0.05, c2 = 0.25 have been

chosen.
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We provide three series of results for the problems (P)lin
(1) and (P)hyp

(1) with the volumetric constraint
(2.7) and Θ = Ω. In the first and second series, the influence of the parameter R has been studied while in
the third series, R is kept constant but ε1 varies. For comparison, the problems (P)lin and (P)hyp have been
solved as well.

Image pair 1

ε1 (P)lin (P)lin
(1) (P)hyp (P)hyp

(1)

(2.7) not present Q = 13.2374 a) b) Q = 12.9879 a)

G = 0.1500 G = 0.1954

T = −17.3888 T = −8.1379

10−6 Q = 16.4122 Q = 16.1747
G = 0.0937 G = 0.0988

T = 10−6 T = 10−6

10−5 Q = 16.4178 Q = 16.1750
G = 0.0936 G = 0.0988

T = 0.000005 T = 0.000005

10−4 Q = 16.4372 Q = 16.1856
G = 0.0936 G = 0.0988

T = 0.00005 T = 0.00005

10−3 Q = 16.4532 Q = 16.1971
G = 0.0937 G = 0.0987

T = 0.0005 T = 0.0005

10−2 Q = 16.5181 c) Q = 16.2519
G = 0.0937 G = 0.0984

T = 0.005 T = 0.005

10−1 Q = 17.1819 Q = 16.9397
G = 0.0927 G = 0.0956

T = 0.050001 T = 0.050001

0.50 Q = 22.0640 Q = 21.8621
G = 0.0733 G = 0.0782

T = 0.25 T = 0.25

Table 4.3. Variation in ε1 for R = 12, ηmax = 0.001. In (P)lin and (P)lin
(1), we used µ = 10−6. In (P)hyp and (P)hyp

(1),

µ = 10−5, p = 2, c1 = 0.05, c2 = 0.25 have been chosen.

Remarks. Table 4.1.: a) G exceeds the maximal grey value difference of the original images.
Table 4.2.: a) Best value obtained in presence of (2.7) at all. b) See Figs. 16− 19. c) See Figs. 20− 22. d)
See Figs. 23− 25. e) See Figs. 26− 28.
Table 4.3.: a) G exceeds the maximal grey value difference of the original images. b) See Figs. 10, 11 and
14. c) See Figs. 12, 13 and 15.

c) The control restriction as a regularization parameter.

Already in [ Brune/Maurer/Wagner 09 ] and [ Wagner 10 ] , it has been pointed out that the introduc-
tion of a gradient constraint has a regularizing effect by itself. This statement will be supported again by
quantitative results obtained with (P)lin

(1) and (P)hyp
(1). In the following experiments, we use again the

image pair 1 and vary R exclusively while all other parameters have been kept constant.
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Image pair 1

R (P)lin
(1) (P)hyp

(1)

0.50 Q = 40.7873 Q = 40.4265
0.75 Q = 35.7710 Q = 34.9613
1.00 Q = 33.0452 Q = 31.7624
2.00 Q = 29.2175 Q = 26.5697
4.00 Q = 27.0962 Q = 22.9474
8.00 Q = 25.9010 Q = 20.3595

12.00 Q = 25.7438 a) Q = 20.1982
16.00 Q = 25.7476 Q = 20.1643 a)

32.00 Q = 25.8166 Q = 20.1946
102 Q = 25.9233 Q = 20.4197

103 Q = 25.7812 Q = 20.2477 b)

104 Q = 25.7812 Q = 20.2477

105 Q = 25.7789 c) Q = 20.3781
106 Q = 25.7789 Q = 20.2216

Remarks. a) Best registration within this column.
b) Another local minimum of Q(x̂, ŷ). c) By further
increase of R, neither the optimal solution of (P)lin

(1)

nor Q(x̂, ŷ) will be changed.

Table 4.4. Regularizing effect of R with µ = 10−5, ηmax = 10−5, ε1 = 10−4. In (P)hyp
(1), p = 2, c1 = 0.05, c2 = 0.25

have been chosen. In all experiments, we obtained G 6 0.02.

d) Experiments with rigid motion of a subregion.

In this subsection, we present selected results for the problems (P)lin
(2) and (P)hyp

(2). The additional
restrictions (2.10) and (2.11) have been imposed in the subregion Θ = [ 30 , 96 ]2, which corresponds with
the rotated cutout of Fig. 3.

Image pair 3

R (P)lin (P)lin
(2) (P)hyp (P)hyp

(2)

0.5 Q = 31.6158 Q = 43.5790 Q = 31.3315 Q = 43.4407

G = 0.0232 G = 0.0234 G = 0.0241 G = 0.0241

2.0 Q = 20.7947 Q = 32.1040 Q = 18.1770 Q = 30.8851

G = 0.0863 G = 0.0863 G = 0.1028 G = 0.1028

4.0 Q = 19.3102 Q = 30.9771 Q = 14.7338 Q = 29.0481

G = 0.0908 G = 0.0908 G = 0.1340 G = 0.1340

8.0 Q = 19.0335 b) Q = 30.8352 c) Q = 12.8937 a) d) Q = 28.2273 e)

G = 0.0914 G = 0.0914 G = 0.2285 G = 0.2029

12.0 Q = 19.0317 Q = 30.7804 Q = 12.7180 a) Q = 28.1374 a)

G = 0.0916 G = 0.0914 G = 0.3750 G = 0.2793

16.0 Q = 19.0612 Q = 30.8155 Q = 12.8120 a) Q = 28.1683 a)

G = 0.0811 G = 0.0578 G = 0.4615 G = 0.4105

Table 4.5. Rigid motion of Θ = [ 33 , 96 ]2 for µ = 10−5, ηmax = 0.001 and ε = 10−4. In (P)hyp and (P)hyp
(2), p = 2,

c1 = 0.05, c2 = 0.25 have been chosen.
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Remarks. a) G exceeds the maximal grey value difference of the original images. b) See Figs. 28− 30. c)
See Figs. 31− 33. d) See Figs. 34− 36. e) See Figs. 37− 39.

e) Figures.

1

Figs. 10− 11: Results for (P)lin and image pair 1 with µ = 10−6, ηmax = 0.001 and R = 12.0

1

Figs. 12− 13: Results for (P)lin
(1) and image pair 1 with µ = 10−6, ηmax = 0.001, ε1 = 0.01 and R = 12.0

Figs. 14− 15: Deformed grids for the experiments above. Left: result of (P)lin. Right: result of (P)lin
(1).
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Figs. 16− 27: Results for image pair 2 with µ = 10−5, ηmax = 0.001 and R = 8.0. First row: (P)lin. Second row:

(P)lin
(1) with ε1 = 10−4. Third row: (P)hyp with p = 2, c1 = 0.05, c2 = 0.25. Fourth row: (P)hyp

(1) with p = 2,

c1 = 0.05, c2 = 0.25 and ε1 = 10−4.
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Figs. 28− 39: Results for image pair 3 with µ = 10−5, ηmax = 0.001 and R = 8.0. First row: (P)lin. Second row:

(P)lin
(1) with ε = 10−4. Third row: (P)hyp with p = 2, c1 = 0.05, c2 = 0.25. Fourth row: (P)hyp

(1) with p = 2,

c1 = 0.05, c2 = 0.25 and ε = 10−4.
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5. Discussion and conclusions.

The experiments with (P)lin
(1) and (P)hyp

(1) in Subsect. 4.b) show that, with an appropriate choice of the
parameters µ, ηmax and R, the registration will reduce the relative error by 80− 85% even in presence of
the volumetric constraint (2.7). The best value amounts to Q = 13.62%. For identical values of µ, R and
ηmax, the hyperelastic regularization produces always the better values of Q. This will be confirmed even
by Table 4.3. where in (P)lin

(1) a smaller regularization parameter µ has been used than in (P)hyp
(1). On

the other hand, as one may expect, the problem (P)lin
(1) is superior to (P)hyp

(1) with respect to the runtime
behaviour.
In the direct comparison of (P)lin

(1) and (P)hyp
(1) with the problems (P)lin and (P)hyp, we observe a loss of no

more than 1− 3% of registration quality while the — sometimes severe — grid tangling from (P)lin and (P)hyp
has been completely removed (compare, e. g., Figs. 14 and 15 with T = −17.388 and T = 0.005, respectively).
Further, in all experiments with (P)lin

(1) and (P)hyp
(1), the grey value correction G is systematically smaller

than in (P)lin and (P)hyp, remaining always below the maximal grey value difference of the original images.
The variation of the parameter ε1 within [ 10−5 , 10−2 ] causes only minor changes of the reconstruction
quality. A noticeable effect will not be obtained until ε1 ≈ 0.1, then resulting in a heavy smoothing of the
deformation and a substantial loss of reconstruction quality.
The results of Subsection 4.c) demonstrate that, within (P)lin

(1) and (P)hyp
(1), the parameter R from the

control restriction behaves like an additional regularization parameter since the reconstruction quality reaches
its minimum for values R ∈ [ 12 , 16 ] .
Our experiments with (P)lin

(2) and (P)hyp
(2) in Subsect. 4.d) show the possibility to detect simultaneously

an overall elastic deformation and a rigid motion of a subregion known in advance. The incorporation of
the corresponding constraints becomes important if, on the base of x̂, conclusions about the actual motion
of the pictured objects will be drawn. Then the motions known in advance should be replicated within x̂.
Observe that the solutions of (P)lin and (P)hyp give only a “hint” for the rotating motion of the central part
without determining the rotation exactly. The loss of reconstruction quality in the results of (P)lin

(2) and
(P)hyp

(2) may be attributed to the incompatibility between rotation and elastic deformation at the border
∂Θ, which will be indicated by the plots of the greyscale correction as well (see Figs. 35 and 38).

Conclusion.

In the present work, we demonstrated that the elastic/hyperelastic image registration problem can be success-
fully reformulated and solved as a multidimensional control problem with convex and polyconvex constraints.
In accordance with the requirements of the registration and the a priori available information, the problems
can be augmented with additional state and control restrictions, to the point of modelling the rigid motion of
selected subregions. In presence of the volumetric constraint (2.7), the relative error between template and
reference image could be reduced in the course of the registration by up to 85% while grid tangling has been
completely suppressed. Consequently, it seems advisable to keep the constraint (2.7) in future applications.
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30. [ Laird/Wächter 09 ] Laird, C.; Wächter, A.: Introduction to IPOPT: A tutorial for downloading, installing,
and using IPOPT. Revision No. 1690. Electronically published: http://www.coin-or.org/Ipopt/documentation/
(accessed at 17. 09. 2010)

31. [ Le Guyader/Vese 09 ] Le Guyader, C.; Vese, L.: A combined segmentation and registration framework with
a nonlinear elasticity smoother. In: Tai, X.-C.; Mørken, K.; Lysaker, M.; Lie, K.-A. (Eds.): Scale Space and
Variational Methods in Computer Vision, Second International Conference, SSVM 2009, Voss, Norway, June 1-5,
2009. Proceedings. Springer; Berlin - Heidelberg 2009 (LNCS 5567), 600 – 611

32. [ Modersitzki 04 ] Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press; Oxford
2004

33. [ Modersitzki 09 ] Modersitzki, J.: FAIR. Flexible Algorithms for Image Registration. SIAM; Philadelphia 2009

34. [ Museyko/Stiglmayr/Klamroth/Leugering 09 ] Museyko, O.; Stiglmayr, M.; Klamroth, K.; Leugering,
G.: On the application of the Monge-Kantorovich problem to image registration. SIAM J. Imaging Sci. 2 (2009),
1068 – 1097

35. [ Ogden 03 ] Ogden, R. W.: Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue.
In: Holzapfel, G. A.; Ogden, R. W. (Eds.): Biomechanics of Soft Tissue in Cardiovascular Systems. Springer;
Wien etc. 2003, 65 – 108

36. [ Plataniotis/Venetsanopoulos 00 ] Plataniotis, K. N.; Venetsanopoulos, A. N.: Color Image Processing and
Applications. Springer; Berlin etc. 2000
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