Lecture "Measure and Integration" (winter term 2010/11) — Contents

I. Subjects and history of measure theory

- 1. The measure problem
- 2. Integration with respect to a measure
- 3. Measures as functionals on function spaces
- 4. Remarks about the history of measure theory

II. Definition ranges for set functions

- 1. Set operations and characteristic functions
- 2. Algebraically structured set systems
- 3. The Borel sets and their generation
- 4. The system of the k-dimensional Lebesgue null sets
- 5. The Lebesgue sets and their generation
- 6. The Cantor discontinuum
- A) The classical Cantor set
 - B) Implications for the cardinality of \mathcal{B}^1 and \mathcal{L}^1
 - C) A Lebesgue set, which is not Borel measurable
 - D) Generalized Cantor constructions

III. Contents and measures

- 1. Recall of the definitions, examples, basic properties
- 2. Continuity properties of measures
- 3. The uniqueness theorem
 - A) Dynkin systems
 - B) The uniqueness theorem for $\sigma\text{-finite measures}$
- 4. The extension theorem
 - A) Outer measures
 - B) Carathéodory's measurability condition
 - C) The extension theorem
- 5. The Lebesgue measure
 - A) Application of the extension and uniqueness theorem
 - B) Consistency of the extension approach with the former definitions
 - C) Regularity
 - D) Invariance under rigid motions
- 6. The Banach-Tarski paradox
 - A) Free groups
 - B) A free subgroup of SO(3)
 - C) The Hausdorff paradox
 - D) The Banach-Tarski paradox
- 7. Survey of decomposition theorems for measures
 - A) The relations $\mu \ll \lambda$ and $\mu \perp \lambda$
 - B) Decomposition theorems for measures
 - C) A decomposition theorem for contents

IV. Measurable functions

- 1. \mathcal{A} - \mathcal{B}^1 -measurable functions
- 2. \mathcal{A} - $\overline{\mathcal{B}}^1$ -measurable functions

- 3. Borel- and Lebesgue-measurable functions
 - A) Definition and relation of both
 - B) Lusin's theorem
 - C) Carathéodory functions and the Scorza-Dragoni theorem
- 4. Approximation of measurable functions by step functions

V. The measure integral

- 1. Construction of the measure integral
- 2. Properties of the measure integral
- 3. Convergence theorems
 - A) The Monotone Convergence theorem
 - B) Fatou's lemma
 - C) The Dominated Convergence theorem
- 4. Riemann and Lebesgue integral
 - A) Comparison of both approaches
 - B) The Riemann integral in the Lebesgue theory
- 5. Further properties of the measure integral (survey)
 - A) Indefinite integral
 - B) Lipschitz functions
 - C) Parameter integrals
- 6. The $L^p(\Omega, \mu)$ -spaces
 - A) The L^p -norms
 - B) The chain of L^p -spaces
 - C) L^p -convergence
 - D) The mean value theorem
 - E) Baire classes

VI. Signed measures

- 1. Definition and basic properties
- 2. The Hahn decomposition of Ω
- 3. The Jordan decomposition of ν
- 4. Absolute continuity and the Radon-Nikodym theorem
- 5. Further decompositions of signed measures
- 6. Banach spaces of signed contents and measures
- 7. Signed measures as linear, continuous functionals
 - A) Integration with respect to signed set functions
 - B) The space $(C^{0}(\Omega))^{*}$
 - C) The space $(L^{\infty}(\Omega, \mathcal{B}^{k}_{\Omega}, \lambda^{k}))^{*}$

VII. Applications of measure theory in the context of optimization

- 1. Identification of generalized derivatives as measures
 - A) Schwartz distributions
 - B) The space $BV(\Omega)$
 - C) Second derivatives of convex functions
- 2. Measures as Lagrange multipliers related to state constraints
 - A) State-constrained optimization problems in Sobolev spaces
 - B) The subdifferential of convex functions
 - C) The subdifferential for locally Lipschitz functions and the multiplier rule
- 3. Bochner integration
 - A) Motivation and basic ideas
 - B) Selected spaces of Bochner integrable functions
 - C) Imbedding theorems
 - D) The principal theorem of the calculus in the Bochner version
- 4. Young measures

VIII. A list of important topics not treated within this course