Priv.-Doz. Dr. Marcus Wagner

University of Graz, Institute for Mathematics and Scientific Computing
Lecture "Measure and Integration" (HS 2010/11)

## "Measure and Integration" - Examination Questions (I)

1. What is a content and a measure?
2. State the Banach-Tarski paradox in $\mathbb{R}^{3}$.
3. Define: $k$-dimensional Lebesgue measure.
4. Prove that the set of rational numbers forms a 1-dimensional Lebesgue null set within $\mathbb{R}$.
5. For a given set sequence $\left\{\mathrm{A}_{n}\right\}$, define the sets $\lim \sup _{n \rightarrow \infty} \mathrm{~A}_{n}$ and $\liminf _{n \rightarrow \infty} \mathrm{~A}_{n}$ and describe them by characteristic functions.
6. Discuss existence and possible representation of the limit of a monotone set sequence $\left\{\mathrm{A}_{n}\right\}$.
7. Define: ring, algebra, $\sigma$-algebra of sets.
8. What is a generator of a $\sigma$-algebra?
9. Explain the definition of the $k$-dimensional Borel sets $\mathcal{B}^{k} \subset \mathfrak{P}\left(\mathbb{R}^{k}\right)$.
10. How the $k$-dimensional Lebesgue sets $\mathcal{L}^{k} \subset \mathfrak{P}\left(\mathbb{R}^{k}\right)$ will be generated?
11. Construct for an arbitrary $k$-dimensional Lebesgue null set $\mathrm{N}_{0} \subset \mathbb{R}^{k}$ a Borel set $\mathrm{N} \supset \mathrm{N}_{0}$, which is a $k$-dimensional Lebesgue null set as well.
12. Describe the Cantor set $C \subset \mathbb{R}^{1}$ and name its most important topological and algebraical properties.
13. Explain: atomic and diffuse measure.
14. State the theorem about continuity from below, from above and at zero for a measure $\mu$.
15. What is a Dynkin system, and when is a Dynkin system a $\sigma$-algebra?
16. In relation to an outer measure $\mu: \mathfrak{P}(\Omega) \rightarrow \overline{\mathbb{R}}$, describe the system of $\mu$-measurable sets and its properties.
17. State the extension theorem for a measure $\mu$ defined on a ring $\mathcal{A} \subset \mathfrak{P}(\Omega)$.
18. When a $\sigma$-finite measure $\mu: \mathcal{B}^{k} \rightarrow \overline{\mathbb{R}}$ is called regular?
19. Characterize absolute continuity $\mu \ll \lambda$ by an $\varepsilon-\delta$-relation.
20. Describe the three decomposition parts of an arbitrary $\sigma$-finite measure $\mu$ on $\left[\mathbb{R}^{k}, \mathcal{B}^{k}\right]$.

Priv.-Doz. Dr. Marcus Wagner
University of Graz, Institute for Mathematics and Scientific Computing
Lecture "Measure and Integration" (HS 2010/11)

## "Measure and Integration" - Examination Questions (II)

21. When a finite content $\mu: \mathcal{A} \rightarrow \mathbb{R}, \mu \neq \mathfrak{o}$, is called purely finitely additive?
22. What is an $\mathcal{A}-\mathcal{B}^{1}$-measurable function?
23. Prove that the pointwise maximum $\operatorname{Max}(f, g)$ of two $\mathcal{A}$ - $\mathcal{B}^{1}$-measurable functions $f, g$ is $\mathcal{A}$ - $\mathcal{B}^{1}$-measurable as well.
24. State Lusin's theorem.
25. Explain: Carathéodory function.
26. In relation to a measure space $[\Omega, \mathcal{A}, \mu]$, define the set of nonnegative step functions $T^{+}(\Omega)$ and the measure integral $\int_{\Omega} \varphi(x) d \mu(x)$ for $\varphi \in T^{+}(\Omega)$.
27. Define the measure integral for a nonnegative, $\mathcal{A}-\overline{\mathcal{B}}^{1}$-measurable function $f$ and explain how the definition is justified.
28. Prove that an $\mathcal{A}-\overline{\mathcal{B}}^{1}$-measurable function $f$ is $\mu$-integrable iff $|f|$ is $\mu$-integrable.
29. State Fatou's lemma in its extended form.
30. How the Dominated Convergence theorem reads for $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ ?
31. How the Dominated Convergence theorem reads for $f(x)=\sum_{n=1}^{\infty} f_{n}(x)$ ?
32. Express the Lebesgue integral $L-\int_{a}^{b} f(x) d x$ as the limit of Lebesgue sums.
33. Under what conditions the Lebesgue integral $L-\int_{0}^{\infty} f(x) d x$ and the improper Riemann integral $R-\int_{0}^{\infty} f(x) d x$ coincide?
34. For a Lipschitz function $f:[a, b] \rightarrow \mathbb{R}$, express the difference $f\left(x^{\prime \prime}\right)-f\left(x^{\prime}\right)$ as a Lebesgue integral.
35. With respect to the $k$-dimensional Lebesgue measure, define the essential infimum ess $\inf _{x \in \Omega} f(x)$ and the essential supremum ess $\sup _{x \in \Omega} f(x)$ for a Borel-measurable function $f: \Omega \rightarrow \mathbb{R}$.
36. Let $\Omega \subset \mathbb{R}^{k}$ be the closure of a bounded domain. Explain the relations between the spaces $L^{p}\left(\Omega, \lambda^{k}\right)$, $1 \leqslant p \leqslant \infty$.
37. State the mean value theorem for the measure integral.
38. How the definition of a null set must be modified for a signed measure $\nu$ on the measurable space $[\Omega, \mathcal{A}]$ ?
39. State the Hahn decomposition theorem on a measure space $[\Omega, \mathcal{A}, \nu]$ with a signed measure $\nu$.
40. For a signed measure $\nu$ on the measurable space $[\Omega, \mathcal{A}]$, define its positive part $\nu^{+}$, its negative part $\nu^{-}$and the total variation $\vee \nu$.

Priv.-Doz. Dr. Marcus Wagner

University of Graz, Institute for Mathematics and Scientific Computing
Lecture "Measure and Integration" (HS 2010/11)

## "Measure and Integration" - Examination Questions (III)

41. Show that $\vee \kappa \ll \kappa$ for every signed measure.
42. State the Radon-Nikodym theorem for signed measures.
43. Prove the triangle inequality $\left\|\nu^{\prime}+\nu^{\prime \prime}\right\| \leqslant\left\|\nu^{\prime}\right\|+\left\|\nu^{\prime \prime}\right\|$ for signed measures $\nu^{\prime}$, $\nu^{\prime \prime}$ on the measurable space $[\Omega, \mathcal{A}]$.
44. Define the normed spaces $c a[\Omega, \mathcal{A}]$ and $r c a\left[\Omega, \mathcal{B}_{\Omega}^{K}\right]$.
45. Explain how the measure integral can be defined with respect to a signed measure $\nu$ on $[\Omega, \mathcal{A}]$.
46. How the Riesz representation theorem for $\left(C^{0}(\Omega)\right)^{*}$ reads?
47. Describe the dual space $\left(L^{\infty}\left[\Omega, \mathcal{B}_{\Omega}^{k}, \lambda^{k}\right]\right)^{*}$.
48. Define the weak derivative $g=D f$ of a function $f:[a, b] \rightarrow \mathbb{R}$.
49. What is a Schwartz distribution?
50. Describe the space $B V(\Omega)$ of the functions of bounded variation and the norm used on it.
