"Measure and Integration" — Examination Questions (I)

- 1. What is a content and a measure?
- 2. State the Banach-Tarski paradox in \mathbb{R}^3 .
- 3. Define: k-dimensional Lebesgue measure.
- 4. Prove that the set of rational numbers forms a 1-dimensional Lebesgue null set within R.
- 5. For a given set sequence $\{A_n\}$, define the sets $\limsup_{n\to\infty} A_n$ and $\liminf_{n\to\infty} A_n$ and describe them by characteristic functions.
- 6. Discuss existence and possible representation of the limit of a monotone set sequence $\{A_n\}$.
- 7. Define: ring, algebra, σ -algebra of sets.
- 8. What is a generator of a σ -algebra?
- 9. Explain the definition of the k-dimensional Borel sets $\mathcal{B}^k \subset \mathfrak{P}(\mathbb{R}^k)$.
- 10. How the k-dimensional Lebesgue sets $\mathcal{L}^k \subset \mathfrak{P}(\mathbb{R}^k)$ will be generated?
- 11. Construct for an arbitrary k-dimensional Lebesgue null set $N_0 \subset \mathbb{R}^k$ a Borel set $N \supset N_0$, which is a k-dimensional Lebesgue null set as well.
- 12. Describe the Cantor set $C \subset \mathbb{R}^1$ and name its most important topological and algebraical properties.
- 13. Explain: atomic and diffuse measure.
- 14. State the theorem about continuity from below, from above and at zero for a measure μ .
- 15. What is a Dynkin system, and when is a Dynkin system a σ -algebra?
- 16. In relation to an outer measure $\mu: \mathfrak{P}(\Omega) \to \overline{\mathbb{R}}$, describe the system of μ -measurable sets and its properties.
- 17. State the extension theorem for a measure μ defined on a ring $\mathcal{A} \subset \mathfrak{P}(\Omega)$.
- 18. When a σ -finite measure $\mu \colon \mathcal{B}^k \to \overline{\mathbb{R}}$ is called regular?
- 19. Characterize absolute continuity $\mu \ll \lambda$ by an ε - δ -relation.
- 20. Describe the three decomposition parts of an arbitrary σ -finite measure μ on $[\mathbb{R}^k, \mathcal{B}^k]$.

"Measure and Integration" — Examination Questions (II)

- 21. When a finite content $\mu: \mathcal{A} \to \mathbb{R}, \mu \neq \mathfrak{o}$, is called purely finitely additive?
- 22. What is an \mathcal{A} - \mathcal{B}^1 -measurable function?
- 23. Prove that the pointwise maximum Max(f,g) of two \mathcal{A} - \mathcal{B}^1 -measurable functions f, g is \mathcal{A} - \mathcal{B}^1 -measurable as well.
- 24. State Lusin's theorem.
- 25. Explain: Carathéodory function.
- 26. In relation to a measure space $[\Omega, \mathcal{A}, \mu]$, define the set of nonnegative step functions $T^+(\Omega)$ and the measure integral $\int_{\Omega} \varphi(x) d\mu(x)$ for $\varphi \in T^+(\Omega)$.
- 27. Define the measure integral for a nonnegative, $\mathcal{A}-\overline{\mathcal{B}}^1$ -measurable function f and explain how the definition is justified.
- 28. Prove that an \mathcal{A} - $\overline{\mathcal{B}}^1$ -measurable function f is μ -integrable iff |f| is μ -integrable.
- 29. State Fatou's lemma in its extended form.
- 30. How the Dominated Convergence theorem reads for $f(x) = \lim_{n \to \infty} f_n(x)$?
- 31. How the Dominated Convergence theorem reads for $f(x) = \sum_{n=1}^{\infty} f_n(x)$?
- 32. Express the Lebesgue integral $L \int_a^b f(x) dx$ as the limit of Lebesgue sums.
- 33. Under what conditions the Lebesgue integral $L \int_0^\infty f(x) dx$ and the improper Riemann integral $R \int_0^\infty f(x) dx$ coincide?
- 34. For a Lipschitz function $f: [a, b] \to \mathbb{R}$, express the difference f(x'') f(x') as a Lebesgue integral.
- 35. With respect to the k-dimensional Lebesgue measure, define the essential infimum ess inf $_{x\in\Omega} f(x)$ and the essential supremum ess $\sup_{x\in\Omega} f(x)$ for a Borel-measurable function $f: \Omega \to \mathbb{R}$.
- 36. Let $\Omega \subset \mathbb{R}^k$ be the closure of a bounded domain. Explain the relations between the spaces $L^p(\Omega, \lambda^k)$, $1 \leq p \leq \infty$.
- 37. State the mean value theorem for the measure integral.
- 38. How the definition of a null set must be modified for a signed measure ν on the measurable space $[\Omega, \mathcal{A}]$?
- 39. State the Hahn decomposition theorem on a measure space $[\Omega, \mathcal{A}, \nu]$ with a signed measure ν .
- 40. For a signed measure ν on the measurable space $[\Omega, \mathcal{A}]$, define its positive part ν^+ , its negative part ν^- and the total variation $\vee \nu$.

Priv.-Doz. Dr. Marcus Wagner University of Graz, Institute for Mathematics and Scientific Computing Lecture "Measure and Integration" (HS 2010/11)

"Measure and Integration" — Examination Questions (III)

- 41. Show that $\forall \kappa \ll \kappa$ for every signed measure.
- 42. State the Radon-Nikodym theorem for signed measures.
- 43. Prove the triangle inequality $\|\nu' + \nu''\| \leq \|\nu'\| + \|\nu''\|$ for signed measures ν', ν'' on the measurable space $[\Omega, \mathcal{A}]$.
- 44. Define the normed spaces $ca[\Omega, \mathcal{A}]$ and $rca[\Omega, \mathcal{B}_{\Omega}^{K}]$.
- 45. Explain how the measure integral can be defined with respect to a signed measure ν on $[\Omega, \mathcal{A}]$.
- 46. How the Riesz representation theorem for $(C^{0}(\Omega))^{*}$ reads?
- 47. Describe the dual space $(L^{\infty}[\Omega, \mathcal{B}^{k}_{\Omega}, \lambda^{k}])^{*}$.
- 48. Define the weak derivative g = Df of a function $f: [a, b] \to \mathbb{R}$.
- 49. What is a Schwartz distribution?
- 50. Describe the space $BV(\Omega)$ of the functions of bounded variation and the norm used on it.