Brandenburg University of Technology, Cottbus; Department of Mathematics, Chair for Optimization Course "Calculus of Variations" (winter term 2003/04)

Course "Calculus of Variations" (winter term 2003/04) — Contents

I. Introduction

- 1. Subject of the course
- 2. Examples
- 3. Basic problems
- 4. Minimizers and minimal values
- 5. Historical remarks: "classical" vs. "direct" methods in calculus of variations

II. Variational equations and Sobolev spaces

- 1. Summary of the function spaces used in the course
- 2. The fundamental lemma of the calculus of variations
- 3. Weak derivatives
- 4. Some properties of the spaces $W_{p}^{1,n}$

III. Needle variations of Weierstrass type

- 1. The Weierstrass condition
- 2. The Legendre condition as a consequence of the Weierstrass condition
- 3. Formulation of both conditions for vectorial problems

IV. Differential calculus for functionals

- 1. The first variation of a functional
- 2. Differential calculus in Banach spaces
- 3. Remarks about the structure of integral functionals in variational problems

V. Investigation of the first variation

- 1. The Euler-Lagrange equations for C^2 -solutions of (P_1) , (P_2)
- 2. Special cases of their integration
- 3. The Euler-Lagrange equations for C^2 -solutions of (P_4) , (P_5)
- 4. The integrated Euler-Lagrange equation for PC^1 -solutions of (P_1)
- 5. A sufficient optimality condition

VI. Canonical formulation of the necessary conditions

- 1. Transformation of the basic problem (P₂) into "canonical form"
- 2. The Hamiltonian system
 - A) Energy integral
 - B) Cyclical coordinates
 - C) Geometry within the state space
 - D) Canonical transformations
 - E) The Hamilton-Jacobi PDE
- 3. Remarks about the transformation of (P₂) into canonical form
 - A) Interpretation by means of the Legendre transformation
 - B) Interpretation as a multiplier rule

VII. Constrained variational problems

- 1. A general multiplier rule
- 2. Application of the multiplier rule to (P₃)
- 3. Some special cases
 - A) Basic problem (P₂) with incomplete boundary conditions
 - B) Bolza problem
 - C) Isoperimetric problem

VIII. Existence theorems

- 1. The generalized Weierstrass theorem
- 2. Convexity and the existence theorem for scalar problems
- 3. Quasiconvexity and the existence theorem for vectorial problems

IX. Examples for direct methods in calculus of variations

- 1. Variational problems with energy functionals
- 2. Equivalence between self-adjoint boundary value problems and variational problems (Q)
- 3. Equivalence between elliptical boundary value problems and variational problems (Q)
- 4. Solution of (Q) by the Ritz method
- 5. Solution of (Q) by finite element methods (FEM)
 - A) Subspaces of continuous, piecewise linear functions
 - B) Convergence of FEM with Courant triangles
 - C) Remarks about the numerical realization of FEM

X. Regularity theorems

XI. Outlook

Seminar: List of topics

- 1. Mathematical modelling in the calculus of variations
- 2. Proof techniques in calculus of variations: the fundamental lemma and its generalizations
- 3. First-order necessary conditions for the basic problem
- 4. First-order necessary conditions for the basic problem (II)
- 5. Necessary condition for strong local minimizers
- 6. Canonical formalism
- 7. The multiplier rule
- 8. Second-order necessary and sufficient conditions for the basic problem
- 9. Second-order necessary and sufficient conditions for the basic problem (II)
- 10. Solution of BVP's by finite element methods