Priv.-Doz. Dr. Marcus Wagner

Brandenburg University of Technology, Cottbus; Department of Mathematics, Chair for Optimization Lecture "Optimization with Lipschitz Functions" (summer term 2008)

Lecture "Optimization with Lipschitz Functions" (summer term 2008) Contents

I. Lipschitz functions on \mathbb{R}^m

- 1. Subject of the lecture
- 2. Examples of Lipschitz functions
 - A) C^1 -functions
 - B) Pointwise maximum of Lipschitz functions
 - C) Distance function related to a closed set $C \subseteq \mathbb{R}^m$
 - D) The kth eigenvalue of a symmetric matrix
- 3. Lip (Ω, \mathbb{R}) as normed vector space
- 4. Local Lipschitz continuity
 - A) Definition
 - B) Example: C^1 -functions
 - C) Example: Generalized convexity notions from the Calculus of Variations

II. Differentiability of Lipschitz functions

- 1. Measurable sets and measurable functions
 - A) Null sets
 - B) The system of the Lebesgue sets
 - C) Measurable functions
 - D) Approximation of measurable functions by semicontinuous ones
- 2. Selected topics from the Lebesgue integration theory
- 3. Differentiability almost everywhere of Lipschitz functions on \mathbb{R}
- 4. Differentiability almost everywhere of Lipschitz functions on \mathbb{R}^m
- 5. Notes and remarks
 - A) Local versions of the theorems from 3. and 4.
 - B) Weak derivatives
 - C) Lipschitz functionals on infinite-dimensional Banach spaces

III. The Clarke calculus

- 1. Basic ideas and definitions
- 2. Explicit computation of Clarke subdifferentials
 - A) C^1 -functions
 - B) Convex functions; maximum function
 - C) The Euclidean distance function Dist (x, C)
- 3. Calculation rules for the Clarke subdifferential
- 4. Extension to infinite-dimensional Banach spaces

IV. Nonsmooth optimization problems

- 1. Necessary optimality conditions
 - A) Unconstrained minimization
 - B) Problems with an inclusion constraint
 - C) Problems with equality, inequality and inclusion constraints
- 2. The gradient method
- 3. The subgradient method
 - A) The algorithm
 - B) A convergence theorem in the case of a convex objective
 - C) Remarks and examples concerning the implementation