Dr. Marcus Wagner

Brandenburg University of Technology, Cottbus; Department of Mathematics, Chair for Optimization Lecture "Fourier Analysis" (summer term 2003)

Lecture "Fourier Analysis" (summer term 2003) — Contents

I. Introduction: expansions into series within function spaces

- 1. What are Fourier series, and why they should be studied?
- 2. Expansion within spaces of individual functions / power series
- 3. Expansion within spaces of equivalence classes of functions / trigonometric series

II. L^2 -theory of Fourier series

- 1. Survey: The Lebesgue integral
- 2. Spaces of complex-valued functions on $[-\pi, \pi]$
- $3L^{2}[-\pi,\pi]$ as Hilbert space
- 4. Basic concepts of Fourier series
 - A) Properties of the complex exponential function
 - B) Fourier coefficients
 - C) Completeness of \mathcal{G}
 - D) Fundamental theorems about Fourier series in $L^{2}[-\pi, \pi]$
 - E) Dense subsets in $L^2[-\pi, \pi]$
- 5. The inverse problem
- 6. Remarks about Fourier series of L^1 -functions

III. Pointwise convergence of Fourier series

- 1. L^2 -norm convergence and pointwise convergence
- 2. Basic facts about pointwise convergence of Fourier series
- 3. Dirichlet kernel and Dirichlet integral
- 4. Pointwise convergence for different classes of real-valued functions
 - A) Monotone functions
 - B) Functions of bounded variation
 - C) Lipschitz functions and C^k -functions
- 5. Summary: Everywhere pointwise representation of C^k -functions
- 6. The rate of convergence depending on the existence of derivatives of f
- 7. The Gibbs phenomenon

IV. Cesàro limitation of Fourier series

- 1. What does Cesàro limitation mean?
- 2. Fejér kernels
- 3. The Fejér convergence theorem
- 4. Uniform convergence of Fourier series
- 5. The Weierstrass approximation theorem
- 6. Remarks: Cesàro partial sums and Fourier series of L^1 -functions

V. The Fourier transform

- 1. Motivation and basic idea
- 2. L^p -spaces of functions with infinite domains
- 3. The convolution: "multiplicative" operation with $L^1(-\infty, \infty)$ -functions
- 4. The Fourier transform and its inverse
 - A) Definition
 - B) Properties of the Fourier transform
 - C) Examples
- 5. The Fourier inversion theorem
- 6. The Riemann-Lebesgue theorem

VI. A list of important topics not treated within this course