Brandenburg University of Technology, Cottbus; Department of Mathematics, Chair for Optimization Lecture "Analysis III: Integration and Ordinary Differential Equations" (winter term 2006/07)

Lecture "Analysis III: Integration and Ordinary Differential Equations" (winter term 2006/07) — Contents

A) Applications of the Riemann integration theory in geometry and physics

I. Line and surface integrals of the first type

- 1. Curves in \mathbb{R}^n
- 2. Rectifiable Jordan curves
- 3. Line integrals of the first type
- 4. Regular surfaces in \mathbb{R}^3
- 5. Content of regular surfaces and surface integrals of the first type
- 6. Notes and remarks

II. Line and surface integrals of the second type

- 1. Vector fields in the space \mathbb{R}^3
- 2. Line and surface integrals of the second type
- 3. Potential fields
- 4. Solenoidal fields
- 5. Helmholtz-Weyl decomposition of three-dimensional vector fields
- 6. Extension to higher dimensions $n \neq 3$

III. Integral theorems

- 1. Preliminary remarks concerning methodology
- 2. The Gauss-Ostrogradsky theorem in \mathbb{R}^2
- 3. The Stokes theorem in \mathbb{R}^3
- 4. The Gauss divergence theorem in \mathbb{R}^3
- 5. Applications of the Gauss' and Stokes' theorems

B) Two extensions of the Riemann integral notion

IV. The Riemann-Stieltjes integral

- 1. Introduction. Functions of bounded variation
- 2. Definition and basic properties of the Riemann-Stieltjes integral
- 3. Existence, computation, geometrical interpretation
- 4. Applications

V. The Lebesgue integral

- 1. Basic ideas
- 2. Introduction of the Lebesgue integral via monotone approximation by simple functions
- 3. Properties of the Lebesgue integral and the function set $L(\Omega)$

- 4. The convergence theorems of the Lebesgue theory
 - A) B. Levi's monotone convergence theorem
 - B) Lebesgue's majorized convergence theorem
 - C) Fatou's lemma
- 5. The Riemann integral in the Lebesgue theory
- 6. Survey of further assertions within the Lebesgue theory
 - A) The indefinite integral
 - B) Lipschitz functions
 - C) Integrals depending on parameters
 - D) L^p -spaces and L^p -norms
 - E) Multiple Lebesgue integrals
- 7. Some applications of the Lebesgue integral

C) Ordinary Differential Equations

VI. Basic concepts

- 1. Classification of differential equations
- 2. Solution concepts for ODE's
- 3. Geometrical visualization of the meaning of an ODE
 - A) The directional field
 - B) The state space

VII. Elementary solution procedures for first-order ODE's

- 1. Direct quadrature
- 2. First-order linear equation
 - A) Homogeneous linear equation
 - B) Inhomogeneous linear equation
- 3. Bernoulli equation
- 4. Riccati equation
- 5. Exact differential equation
- 6. Separated differential equation
- 7. Remarks about the numerical solution of first-order ODE's
 - A) Euler-Cauchy's polygonal method
 - B) Quadrature formulas and the related one-step procedures

VIII. Fundamental theorems about first-order ODE's

- 1. The Banach space of the continuous functions $C^0[a,b]$
- 2. The Peano existence theorem
- 3. The Picard-Lindelöf existence and uniqueness theorem
- 4. Dependence on parameters
- 5. Reformulation of the fundamental theorems for systems of differential equations and nth order ODE's

IX. Linear differential equations

- 1. Global existence of solutions
- 2. Linear equations of nth orderwith variable coefficients
 - A) Homogeneous equation
 - B) Inhomogeneous equation
- 3. Linear equations of nth orderwith constant coefficients
 - A) Homogeneous equation
 - B) Inhomogeneous equation
- 4. Outlook on systems of first-order linear equations
 - A) Systems with variable coefficients
 - B) The matrix exponential function
 - C) Systems with constant coefficients

X. A list of important topics not treated within this course